

MATHEMATICS STANDARD LEVEL PAPER 1

Friday 7 November 2008 (afternoon)

1 hour 30 minutes

	C	andi	aate	sessi	on n	umb	er	
0	0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number
 on each answer sheet, and attach them to this examination paper and your cover
 sheet using the tag provided.
- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer all the questions in the spaces provided. Working may be continued below the lines, if necessary.

1.	[Maximum mark: 5]	
	Consider the infinite geometric sequence 3, $3(0.9)$, $3(0.9)^2$, $3(0.9)^3$,	
	(a) Write down the 10 th term of the sequence. Do not simplify your answer.	[1 mark]
	(b) Find the sum of the infinite sequence.	[4 marks]

A particle is moving with a constant velocity along line L. Its initial position is A(6, -2, 10). After one second the particle has moved to B(9, -6, 15).

			\rightarrow
(a)	(i)	Find the velocity vector,	AB

	(ii) Find the speed of the particle.	[4 marks]
(b)	Write down an equation of the line L .	[2 marks]

3. [Maximum mark: 7]

Let
$$\mathbf{A} = \begin{pmatrix} 1 & -2 \\ 3 & p \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} -2 & 1 \\ q & \frac{1}{2} \end{pmatrix}$.

(a) Find AB in terms of p and q.

[2 marks]

(b) Matrix \mathbf{B} is the inverse of matrix \mathbf{A} . Find the value of p and of q.

[5 marks]

				•								 			 													

				 	 														 						 							 	•
				 	 														 						 							 	•

.....

[Maximum mark: 7] 4.

Let f be the function given by $f(x) = e^{0.5x}$, $0 \le x \le 3.5$. The diagram shows the graph of f.

On the same diagram, sketch the graph of f^{-1} . (a)

[3 marks]

Write down the range of f^{-1} . (b)

[1 mark]

Find $f^{-1}(x)$. (c)

[3 marks]

٠.				 		 					 							 										

5. [Maximum mark: 6	5.	[Maximum	mark:	6	1
----------------------------	----	----------	-------	---	---

Let A and B be independent events, where P(A) = 0.6 and P(B) = x.

(a) Write down an expression for $P(A \cap B)$.

[1 mark]

- (b) Given that $P(A \cup B) = 0.8$,
 - (i) find x;

(11) find	. P($(A \cap B)$).
١,	11	, 11114		(IIIID)	,

[4 marks]

(c) **Hence**, explain why *A* and *B* are **not** mutually exclusive.

[1 mark]

	 			-					-																 		
	 															 						•			 		 •
	 															 						•			 		 •

6. [*Maximum mark: 7*]

The diagram shows part of the graph of y = f'(x). The x-intercepts are at points A and C. There is a minimum at B, and a maximum at D.

- (a) (i) Write down the value of f'(x) at C.
 - (ii) **Hence**, show that C corresponds to a minimum on the graph of f, *i.e.* it has the same x-coordinate.

[3 marks]

(b) Which of the points A, B, D corresponds to a maximum on the graph of f?

[1 mark]

(c) Show that B corresponds to a point of inflexion on the graph of f.

[3 marks]

7. [Maximum mark: 7]

Let $f(x) = \sin^3 x + \cos^3 x \tan x$, $\frac{\pi}{2} < x < \pi$.

(a) Show that $f(x) = \sin x$.

[2 marks]

(b) Let $\sin x = \frac{2}{3}$. Show that $f(2x) = -\frac{4\sqrt{5}}{9}$.

[5 marks]

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 13]

Two standard six-sided dice are tossed. A diagram representing the sample space is shown below.

	Ī	Score on second die						
		1	2	3	4	5	6	
	1	•	•	•	•	•	•	
	2	•	•	•	•	•	•	
Score on first die	3	•	•	•	•	•	•	
beore on mist die	4	•	•	•	•	•	•	
	5	•	•	•	•	•	•	
	6	•	•	•	•	•	•	

Let *X* be the sum of the scores on the two dice.

- (a) Find
 - (i) P(X = 6);
 - (ii) P(X > 6);
 - (iii) P(X = 7 | X > 5).

[6 marks]

(b) Elena plays a game where she tosses two dice.

If the sum is 6, she wins 3 points.

If the sum is greater than 6, she wins 1 point.

If the sum is less than 6, she **loses** *k* points.

Find the value of *k* for which Elena's expected number of points is zero.

[7 marks]

9. [Maximum mark: 16]

The acceleration, $a \text{ m s}^{-2}$, of a particle at time t seconds is given by $a = 2t + \cos t$.

(a) Find the acceleration of the particle at t = 0.

[2 marks]

(b) Find the velocity, v, at time t, given that the initial velocity of the particle is 2 m s^{-1} .

[5 marks]

(c) Find $\int_0^3 v \, dt$, giving your answer in the form $p-q \cos 3$.

[7 marks]

(d) What information does the answer to part (c) give about the motion of the particle?

[2 marks]

10. [Maximum mark: 16]

Let $f(t) = a \cos b(t-c) + d$, $t \ge 0$. Part of the graph of y = f(t) is given below.

When t = 3, there is a maximum value of 29, at M. When t = 9, there is a minimum value of 15.

- (a) (i) Find the value of a.
 - (ii) Show that $b = \frac{\pi}{6}$.
 - (iii) Find the value of d.
 - (iv) Write down a value for c.

[7 marks]

The transformation P is given by a horizontal stretch of a scale factor of $\frac{1}{2}$, followed by a translation of $\begin{pmatrix} 3 \\ -10 \end{pmatrix}$.

(b) Let M' be the image of M under P. Find the coordinates of M'.

[2 marks]

The graph of g is the image of the graph of f under P.

(c) Find g(t) in the form $g(t) = 7\cos B(t-C) + D$.

[4 marks]

(d) Give a full geometric description of the transformation that maps the graph of g to the graph of f.

[3 marks]